

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 1

VBUC vs VBUW
Visual Basic Upgrade Companion and Visual Basic Upgrade

Wizard: Comparative Summary

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 2

VBUC vs VBUW: Summary
The Visual Basic Upgrade Wizard (VBUW) is a migration tool developed by

Mobilize.Net that shipped with Microsoft Visual Studio until Visual Studio 2008. The

tool was specifically designed to migrate applications from Visual Basic 6.0 to Visual

Basic.NET. There have been no improvements to VBUW since 2008. Also, Visual

Studio 2008 will no longer be supported by Microsoft as of April 10, 2018. Here’s a

summary of differences between VBUC and VBUW

Feature VBUC VBUW

Automated code migration

VB.NET code output

C# code output

Number of extensions supported 7,000 250

Type inference

ADO.NET support

Structured error handling

.NET native library support

.NET enumerations

Try…Catch error handling

Code refactoring

Code readability improvements

Multiple project support

The Visual Basic Upgrade Companion (VBUC) is an extended and more powerful

version of the VBUW, dedicated to upgrading Visual Basic 6.0 applications to Visual

mailto:info@mobilize.net
https://blogs.msdn.microsoft.com/visualstudio/2017/04/10/end-of-support-for-visual-studio-2008-in-one-year/

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 3

Basic.NET and C#. VBUW does not support C# In addition, VBUC is continuously

upgraded and improved and has been used to convert thousands of projects and

billions of lines of code. VBUC gets better each time it is used since new mappings

and extensions are being discovered. There have been hundreds of upgrades to

VBUC since 2008.

VBUW has a number of deficiencies that make it a less appealing tool than VBUC.

For example, while VBUC can be customized according to your needs, increasing

the percentage of automation of your VB migration project, VBUW has no

extensibility option.

This paper highlights some of the productivity enhancements that the VBUC has

over the VBUW that simplify the Visual Basic 6.0 to .NET migration process.

Extension capability:

VBUC can be extended to meet your specific needs. New extensions augment and

extend the translation dictionary.

The VBUC extension capability enables you to automatically migrate your specific

programming patterns, add new functionality to the migrated application and even

migrate the ActiveX controls that you have in the original application to .NET

Framework components or newer versions of the specific third-party controls, saving

manual effort, time and money.

Here’s a list of the ActiveX controls that VBUC automatically migrates, and their

specific functionality coverage.

Original
Component/Library

From Target
Component/Library

Vendor

COMSVCSLib Microsoft .NET intrinsic Microsoft

CSTextLib Crescent Software C1Input ComponentOne

FPSpread FarPoint Spread FarPoint

MAPI Microsoft .NET intrinsic Microsoft

Mh3dlblLib MicroHelp .NET intrinsic Microsoft

MSACAL Microsoft .NET intrinsic Microsoft

MSComCtl2 Microsoft .NET intrinsic Microsoft

MSComCtlLib Microsoft .NET intrinsic Microsoft

MSComDlg Microsoft .NET intrinsic Microsoft

MSDataGridLib Microsoft TrueDBGrid ComponentOne

MSDBGridLib Microsoft TrueDBGrid ComponentOne

MSFlexGridLib Microsoft FlexGrid ComponentOne

MSMask Microsoft .NET intrinsic Microsoft

MSWLess Microsoft .NET intrinsic Microsoft

MSXML2 Microsoft .NET intrinsic Microsoft

MTxAS Microsoft .NET intrinsic Microsoft

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 4

vb.Printer Microsoft Helper class ArtinSoft

RichTextBox Microsoft .NET equivalents Microsoft

Scripting Microsoft .NET intrinsic Microsoft

SHDocVw Microsoft .NET intrinsic Microsoft

SSActiveTreeView Sheridan .NET TreeView Microsoft

SSCalendarWidgets Sheridan .NET equivalents Microsoft

SSDataWidgets_B Sheridan TrueDBGrid ComponentOne

SSDataWidgets_B Sheridan UltraWinGrid Infragistics

SSDesignerWidgets Sheridan .NET TabControl Microsoft

SSListBar Sheridan UltraWinListBar Infragistics

SSSpliter Sheridan .NET SplitContainer Microsoft

Threed Sheridan .NET TabControl Microsoft

TrueDBGrid50Lib APEX TrueDBGrid ComponentOne

TrueDBGrid60Lib APEX TrueDBGrid ComponentOne

TrueDBGrid70Lib APEX TrueDBGrid ComponentOne

VSFlex7Ctl VideoSoft C1FlexGrid ComponentOne

VSFlex7LCtl VideoSoft C1FlexGrid ComponentOne

VSOcxLib Sheridan .NET intrinsic Microsoft

XArrayCustom APEX Helper class Mobilize

XArrayObject APEX .NET intrinsic Microsoft

This list is growing all the time.

Type Inference

An Artificial Intelligence-based type inference engine has been incorporated into the

Visual Basic Upgrade Companion, which can infer the most appropriate data types

for variables parameters and return values, avoiding the use of "generic" data types

(i.e., Object). When an Object or Variant variable is found, the Visual Basic Upgrade

Companion declares the variable with the appropriate type and avoids unnecessary

migration errors, warnings and issues (EWIs).

By following the type inference approach, the amount of manual work that is required

to check for Upgrade Warnings is drastically reduced.

Example Source Code

Private Sub loadini()

 Dim lngResult As Long

 Dim strFileName

 Dim strResult As String * 50

 strFileName = App.Path & "\createDsn.ini" 'Declare your ini file !

 lngResult = GetPrivateProfileString(KeySection, _KeyKey, strFileName,

strResult,Len(strResult), _strFileName)

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 5

…

End Sub

Code Generated by VBUW

Private Sub loadini()

 Dim lngResult As Integer

 Dim strFileName As Object

 Dim strResult As New VB6.FixedLengthString(50)

'UPGRADE_WARNING: Couldn't resolve default property of object

strFileName.

strFileName = My.Application.Info.DirectoryPath & "\createDsn.ini"

'Declare your ini file !

'UPGRADE_WARNING: Couldn't resolve default property of object

strFileName.

lngResult = GetPrivateProfileString(KeySection, KeyKey, strFileName,

strResult.Value, Len(strResult.Value), strFileName)

…

End Sub

Code Generated by VBUC

Private Sub loadini()

 Dim strResult As New VB6.FixedLengthString(50)

 Dim strFileName As String = My.Application.Info.DirectoryPath &

"\createDsn.ini" 'Declare your ini file !

Dim lngResult As Long = GetPrivateProfileString(KeySection, KeyKey,

strFileName, strResult.Value, Strings.Len(strResult.Value), strFileName)

End Sub

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 6

ADO to ADO.NET

VBUC upgrades the data model from ADO to ADO.NET as opposed to VBUW, which

generates a target application that still uses ADO technology to communicate with

the database via COM Interop wrapper calls. Visual Studio .NET offers a new and

completely redesigned collection of classes for data access, which take into

consideration modern application requirements of distribution, reliability and

scalability. This new data access model is ADO.NET and, in addition to the ADO

features, provides the following advantages:

• Interoperability: All data in ADO.NET is transported in XML format. The data is

provided as a structured text document that can be read by anyone on any

platform.

• Scalability: ADO.NET promotes the use of disconnected datasets, with

automatic connection pooling bundled as part of the package.

• Productivity: ADO.NET can improve overall development time. For example,

typed DataSets help you work more quickly and allow you to produce more bug-

free code.

• Performance: Because ADO.NET provides disconnected datasets, the

database server is no longer a bottleneck and application performance is

improved.

Example Source Code

Private Sub Form_Load()

createDsn

Set db = New ADODB.Connection

Set rs = New ADODB.Recordset

db.Open "Provider=MSDASQL;DSN=TikkisDb;Password=1515151515;"

rs.Open "SELECT * FROM WestSide", db, adOpenKeyset,

adLockPessimistic

End Sub

Code Generated by VBUW

Private Sub frmLogin_Load(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles MyBase.Load

 createDsn()

db = New ADODB.Connection

 rs = New ADODB.Recordset

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 7

 db.Open("Provider=MSDASQL;DSN=TikkisDb;Password=1515151515;")

rs.Open("SELECT * FROM WestSide", db,

ADODB.CursorTypeEnum.adOpenKeyset,

ADODB.LockTypeEnum.adLockPessimistic)

End Sub

Code Generated by VBUC

Private Sub frmLogin_Load(ByVal eventSender As Object, ByVal eventArgs As

EventArgs) Handles MyBase.Load

 createDsn()

 db = New SqlConnection

 rs = New DataSet

 db.Open("Provider=MSDASQL;DSN=TikkisDb;Password=1515151515;")

 Dim com As SqlCommand = New SqlCommand()

 com.Connection = db

 com.CommandText = "SELECT * FROM WestSide"

Dim adap As SqlDataAdapter = New SqlDataAdapter(com.CommandText,

com.Connection)

 rs = New DataSet("dsl")

 adap.Fill(rs)

End Sub

C# Generation

The Visual Basic Upgrade Companion is able to generate C# directly from the Visual

Basic 6.0 source code as an alternative to Visual Basic .NET. Since there are several

Visual Basic 6.0 features not available in C# (i.e. Optional Parameters, Modules,

ReDim, With), the Visual Basic Upgrade Companion performs special conversions

for these features This functionality is not available on VBUW.

Example Source Code

Private Sub loadini()

 Dim lngResult As Long

 Dim strFileName

 Dim strResult As String * 50

 strFileName = App.Path & "\createDsn.ini" 'Declare your ini file !

 lngResult = GetPrivateProfileString(KeySection, _KeyKey, strFileName,

strResult,Len(strResult), _strFileName)

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 8

…

End Sub

Code Generated by VBUC

private void loadini()

{

 FixedLengthString strResult = new FixedLengthString(50);

string strFileName =

Path.GetDirectoryName(Application.ExecutablePath) +

"\\createDsn.ini"; // Declare your ini file !

long lngResult = Module1.GetPrivateProfileString(KeySection,

KeyKey, strFileName, strResult.Value, Strings.Len(strResult.Value),

strFileName);

…

}

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 9

Structured Error Handling

The Visual Basic Upgrade Companion recognizes most “On Error GoTo” patterns

and replaces them with the .NET “Try … Catch” error handling preferred constructs.

WBUW upgrades the application using the same “On Error GoTo” pattern that Visual

Basic 6.0 uses for handling errors.

Using VBUC, the generated code is easier to understand and conforms to the coding

standards used when programming with .NET languages.

Example Source Code

Private Sub Button7_Click()

On Error GoTo error12

If List1.Text = "" Then

 MsgBox "Please Select from List", vbCritical

 Exit Sub

End If

…

error12:

 MsgBox Err.Description, vbCritical

 Exit Sub

End Sub

Code Generated by VBUW

Private Sub Button7_Click(ByVal eventSender As System.Object, ByVal

eventArgs As System.EventArgs) Handles Button7.Click

 On Error GoTo error12

 If List1.Text = "" Then

 MsgBox("Please Select from List", MsgBoxStyle.Critical)

 Exit Sub

 End If

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 10

 …

error12:

 MsgBox(Err.Description, MsgBoxStyle.Critical)

 Exit Sub

 End Sub

Code Generated by VBUC

Private Sub Button7_Click(ByVal eventSender As Object, ByVal eventArgs As

EventArgs) Handles Button7.Click

Try

 If List1.Text = "" Then

MessageBox.Show("Please Select from List", String.Empty,

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Exit Sub

 End If

 …

 Catch excep As System.Exception

MessageBox.Show(excep.Message, String.Empty,

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Exit Sub

 End Try

End Sub

.NET Native Libraries:

Instead of upgrading VB6 code using the Visual Basic Compatibility Libraries like the

VBUW does, the VBUC promotes the use of .NET native libraries whenever

possible.

There are several functions that when upgraded, still rely on the Visual Basic

compatibility library. Once again, this does not mean that your code will not compile;

however, your code will be better off using the native libraries that the .NET

framework offers. By using native libraries, you are making your code easier to read,

easier to maintain, and in some cases you are improving the performance of the

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 11

application. In the following table you can compare the end result of upgrading the

Left, InStr and Len functions with VBUW and VBUC:

The code that is upgraded with the Upgrade Wizard relies on the same functions

that were used in Visual Basic 6.0 and therefore, uses the Visual Basic compatibility

libraries. On the other hand, the VBUC migrates functions such as Len to the Length

property of the .NET String class. The table also shows the result of migrating the

Left and InStr functions using the Wizard and the VBUC. VBUC uses properties from

native classes, improving speed of the application by eliminating the overhead

involved with interoperability.

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 12

.NET Enumerations:

Another important Visual Basic Upgrade Companion feature is that it replaces

numeric literals assigned to several control properties with .NET enumeration

equivalents when possible, so that the generated Visual Basic .NET code is more

legible and maintainable.

Example Source Code

Sub Foo()

num = vbArrow

Me.MousePointer = num

Me.MousePointer = 11

Me.MousePointer = vbArrow

End Sub

Code Generated by VBUW

Sub Foo()

Dim num As Object

'UPGRADE_WARNING: Couldn't resolve default property …

num = System.Windows.Forms.Cursors.Arrow

'UPGRADE_WARNING: Couldn't resolve default property …

'UPGRADE_ISSUE: Form property Form1.MousePointer does not support

custom mouse pointers.

Me.Cursor = num

Me.Cursor = 11

Me.Cursor = System.Windows.Forms.Cursors.Arrow

End Sub

Code Generated by VBUC

Sub Foo()

Dim num As System.Windows.Forms.Cursor =

System.Windows.Forms.Cursors.Arrow

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 13

Me.Cursor = num

Me.Cursor = System.Windows.Forms.Cursors.WaitCursor

Me.Cursor = System.Windows.Forms.Cursors.Arrow

End Sub

The code that was upgraded with VBUW presents several compilation and runtime

problems. For instance, the literal ‘11’ assigned to the Cursor property should be

converted to its respective enumeration to make the code compile.

VBUC has made various improvements to the upgraded code. First, it can be

observed in the first line in the function that the variable ‘num’ was correctly identified

as type Cursor, as opposed to the type Object that was defined by the Upgrade

Wizard. If you look at the line corresponding to the assignment of a constant to the

Cursor property, you can also identify that the VBUC has converted the value of ‘11’

to the corresponding enumeration value.

Comparison between VBUW and VBUC in
terms of quality of code
Another important difference between VBUC and VBUW is the quality of the code

generated by the tools, which is the main point of this section. We are going to show

some of the code quality improvements that the VBUC has over the VBUW.

VBUC does further code analysis to detect patterns that can be upgraded to more

.NET-like, native structures. These aspects make the output code more readable

and maintainable.

These code improvements include:

 Long "If..ElseIf" constructs are upgraded to the "switch" construct (“Select
Case” in VB.NET) in order to improve performance and use better
programming practices.

 VBUC uses the "Return" keyword instead of the function name to set the
return value within a function.

Example Source Code

Public Function TrimSpaces(Text As String) As String

 Dim Loop1 As Long, SpaceCheck As String

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 14

 Dim FullString As String

…

 TrimSpaces = FullString$

End Function

Code Generated by the VBUW

Public Function TrimSpaces(ByRef Text As String) As String

 Dim Loop1 As Integer

 Dim SpaceCheck As String

 Dim FullString As String

 …

 TrimSpaces = FullString

End Function

Code Generated by the VBUC

Public Function TrimSpaces(ByRef Text As String) As String

 Dim SpaceCheck, FullString As String

 …

 Return FullString

End Function

• Collections are upgraded to ArrayList or HashTable depending on their
usage.

• "For...Each" blocks are used instead of an cycles that use iteration variables.

Example Source Code

Private Sub GetAuthorList()

 …

 While (Not rs.EOF)

 List1.AddItem rs.Fields("Author").Value

 rs.MoveNext

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 15

…

End Sub

Code Generated by the VBUW

Private Sub GetAuthorList()

 …

 While (Not rs.EOF)

 List1.Items.Add(rs.Fields("Author").Value)

 rs.MoveNext()

 End While

 …

End Sub

Code Generated by the VBUC

Private Sub GetAuthorList()

 …

For Each iteration_row As DataRow In

rs.Tables(0).Rows

 List1.Items.Add(iteration_row.Item("Author"))

 Next iteration_row

…

End Sub

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 16

 Initialization values for variables are moved to the variable declaration.

Example Source Code

Private Sub Command2_Click()

 Dim year1 As Integer

 Dim year2 As Integer

 year1 = Format(SSDateCombo1.Date, "yyyy")

 year2 = Format(SSDateCombo2.Date, "yyyy")

 GetTitlesByPublishedYear year1, year2

End Sub

Code Generated by the VBUW

Private Sub Command2_Click(ByVal eventSender As

System.Object, ByVal eventArgs As System.EventArgs) Handles

Command2.Click

 Dim year1 As Short

 Dim year2 As Short

 year1 = CShort(VB6.Format(SSDateCombo1.Date, "yyyy"))

 year2 = CShort(VB6.Format(SSDateCombo2.Date, "yyyy"))

 GetTitlesByPublishedYear(year1, year2)

End Sub

Code Generated by the VBUC

Private Sub Command2_Click(ByVal eventSender As Object, ByVal

eventArgs As EventArgs) Handles Command2.Click

Dim year1 As Integer =

CInt(CDate(SSDateCombo1.Value.Date).ToString("yyyy"))

Dim year2 As Integer =

CInt(CDate(SSDateCombo2.Value.Date).ToString("yyyy"))

 GetTitlesByPublishedYear(year1, year2)

End Sub

mailto:info@mobilize.net

Your App. New. Again.

10500 NE 8th St, Ste. 1775. Bellevue, WA 98004  info@mobilize.net  + 425-609-8458 17

 Typical nested "If" statements used in VB6 to produce short circuit evaluation
are upgraded to a single "If" statement with short circuit evaluation operators
(AndAlso and OrElse).

 Mobilize your 90’s desktop app.

mailto:info@mobilize.net

