1. .NET 8 Support

With the recent release done by Microsoft, we are proud to announce the support for .NET 8
platform. This option will allow the user to generate code using this version as target, the option
is available for C# and VB.NET languages.

Target Language %] CSharp | NET Platform @ .NET 8 -

Visual Studio Version @ 2022 ~ Helpers Integration [€] Source Code ~

Upgraae Uutput

Note: .NET 8 platform is available only when selecting Visual Studio 2022 as target.

2. Missing References Feature

To have the best code quality, the VBUC tool needs to have all the references solved, however,
this could be hard to achieve especially when the VB6 code was moved to a new machine, some
libraries may be hard to install in the newest OS or the provider could no longer exist.

In order to reduce the complexity when using the VBUC, a new feature was developed, with this
improvement the VBUC will try to solve all the missing references in the machine where it is
installed in order to let the user upgrade the code to .NET even when some references are not
present in the environment. A .tlb file will be copied to the machine with all the information that
the VBUC needs to generate the code in the better way.

Reference List

Resolved Name Path Friendly Name . Type Version Guid
v stdole2.tlb C:\Windows\System32 OLE Automation External 2.0 {00020430-0000-0000-C000-0000000000463
v SPR32X30-3.0.tlb C:\Users\cchevez\AppData\Roaming\Mobilize.Net\! FarPoint Spread 3.0 External 3.0 {BO2F3647-766B-11CE-AF28-C3A2FBE76A13}

Notes: The server with the references will be populated by demand, and not all the references
may be available to be downloaded.
This feature is currently only available on 64-bit OS.

Disclaimer: The reference will allow the VBUC to upgrade the code, however, some

compilation errors may be shown if the license or reference for the target component does not
exist in the machine where the .NET code is generated.

3. C# Features Implementation

Three different features were implemented in order to improve the code generation when
selecting C#.

http://vb.net/

3.1.Discards

Discards make the intent of your code clear. A discard indicates that our code never uses the
variable and, they enhance its readability and maintainability.

Note: The discards will be automatically generated when selecting Visual Studio 2017 or
superior as target.

e Current VB6 Code:

'Discards

Dim a As Integer
Dim b As Integer
Dim c As Integer

=5
=&
= 10
=a+b+c

o0 oW

Dim str As String
str = ReturnString
Dim myBool As Boolean

d = UsingDiscardParameteres (10, "Test"™, myBool)
Dim ctl As Collection

Set ctl = Hew Collection
e = DiscardInSwitch(ctl)

e Previous C# Code:

//Discards

int a = 5;

int b = &;

int ¢ = 18;

int d =a+b + c;

string str = ReturnString();

bool myBool = false;
= UsingDiscardParameteres(1@, "Test", myBool);

OrderedDictionary ctl = new OrderedDicticnary(System.StringComparer.0OrdinalIgnoreCase);
string & = DiscardInSwitch{ctl);

e Current C# Code:

//Discards
int a = 5;
int b = &;
int ¢ = 18;
_=a+h+c;
= ReturnString();

bool myBool = false;
_ = UsingDiscardParameteres(18, "Test", myBool);

OrderedDictionary ctl = new OrderedDicticnary(System.StringComparer.OrdinalIgnoreCase);
_ = DiscardInSwitch(ctl);

3.2. Interpolated Strings

Before C# 10 it was possible to concatenate strings, the string interpolation functionality existed
but did not allow interpolated string constants. this is now possible with C# 10 for readability
reasons.

Notes: When targeting .NET Framework 4.6 or superior, this feature will be applied for strings
in the code distinct from constants.

When targeting .NET 6 or superior, this feature will be applied to constants also.

e Current VB6 Code:

Con=st bookPrice = 24,99
Const BookMName = "The Lord of The Rings: The Two Towesrs™

Const VideoGame = "Mortal Eomkat "™
Const CHE = 1

Const TWO = 2

Const TEH = "XW

Const Versionl = VideoGame & CHE
Const Version2 = VideoGame & TWO
Const Versionld = VideoGame & TEHN

Dim =tr02 As String
Dim fullName As String

Sub main{()
'"Interpolated Strings
str02 = "Book "M & BookMName £ "' price is " & bookPrice

Hame = "Peter™
lastName = "Jackson"™
fullName = Name + "™ " 4+ lastName

e Previous C# Code:

const double bookPrice = 24.99d;
const string BookName = "The Lord of The Rings: The Two Towers";

const string VideoGame = "Mortal Hombat ";

const int ONE = 1;

const int TWO = 2;

const string TEN = "X";

static readonly string Versionl = VideoGame + ONE.ToString();
static readonly string Versicon2 = VideoGame + TWO.ToString();
const string Versionl® = VideoGame + TEN;

static string stre2z = "";
static string fullName = "";

reference

i
//Interpolated Strings
str82 = "Book '" + BookName + "' price is " + bookPrice.ToString();

string Name = "Peter";
string lastName = "Jackson";
fullMame = Name + " " + lastName;

e Current C# Code Targeting .NET Framework 4.8:

const double bookPrice = 24.99d;
const string BookName = "The Lord of The Rings: The Two Towers";

const string VideoGame = "Mortal Hombat ";

const imt ONE = 1;

const imt TWO = 2;

const string TEN = "X";

static readonly string Versionl = VideoGame + ONE.ToString();
static readonly string Version2 = VideoGame + TWO.ToString();
const string Versionl® = VideoGame + TEMN;

static string str@z = "";
static string fullName = "";

public static void Main()

{

//Interpolated Strings

str@2 = $"Book '{BookName}' price is {bookPrice. CI;

string Name = "Peter";
string lastName = "Jackson";
fulllame = $"{Name}l {lastMamel";

e Current C# Code Targeting .NET 8:

const double bookPrice = 24.99d;
const string BookName = "The Lord of The Rings: The Two Towers";

const string VideoGame = "Mortal Hombat ";

const int ONE = 1;

const int TWO = 2;

const string TEN = "X";

static readonly string Versionl = $"{VideoGame}{ONE. O™
static readonly string Version2 = $"{VideoGame}{TWO. 1
const string Versionl® = VideoGame + TEN;

static string strez = "v;
static string fullName = "";

éubiicnétatic void Main()
1
{/Interpolated Strings
str@2 = $"Book '{BookName}' price is {bookPrice. 1

string Name = "Peter";
string lastName = "Jackson";
fullMame = $"{Name}l {lastMamel";

3.3. Improved Pattern Matching

C# 9 allows you to use relational pattern which enables the use of <, >, <= and >= in patterns,
however, this improvement will be applied to some patterns only.

Note: This improvement will be applied automatically when targeting .NET 5 or superior.

e Current VB6 Code:

Public Function GetTaxl(p As Product) As Integer
Select Case p.CategoryID

Case 1
GetTaxl = 0
Casze Iz < 5
GetTaxl = 5

Case Is > 20
GetTaxl = 15
Case Else
GetTaxl = 10
End Select
End Function

Public Function GetTax2 (p As Product) As Integer
Select Case p.CategoryID
Case 0 QOr 1
GetTax2 = 0
Case 2 To 5
GetTax2 = 5
Case Is > 20
GetTaxZ = 15
Case Else
GetTax2 = 10
End Select
End Function

e Previous C# Code:

internal static int GetTaxl(Product p)
1

int switchVar = p.CategoryID;

if (switchVar == 1)

i
return 8;
i
else if (switchVar < 5)
i
return 5;
i
else if (switchVar = 28)
i
return 15;
i
else
i
return 10;
i

}

internal static int GetTax2(Product p)
1
int switchVar = p.CategoryID;
if (switchvar == (@ | 1))
i
return 9;
¥
else if (switchVar == 2 && switchVar == 5)
i

return 5;
b
else if (switchVar = 28)
i
return 15;
b
else
i
return 109;
b

e Current C# Code:

internal static int GetTaxl({Product p)
1
switch(p.CategoryID)
i
case 1 :
return @;
case < 5
return 5;
case = 20 :
return 15;
default:
return 18;
L
h
internal static int GetTax2(Product p)
i
switch(p.CategoryID)
i
case @ | 1 :
return 0;
case *>= 2 and == §
return 5;
case > 20 :
return 15;
default:
return 16;

4. Other Improvements include but are not limited to:

o Databases mappings

e COM Interop improvements

e Microsoft controls mappings

o Grids mappings

e GoTo/GoSub feature improvements

e Helpers improvements to reduce SQL vulnerabilities

